L pi, o8l b

YRR RCESTYRVIVA R

mmalekimajd@gmail.com

U (e

Room 307

Telegram group

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

References cirs
 Books! -
JeffE

* Google

Algorithms by Jeff Erickson

e Prof. and TAs

lo)l olows a5 a>g5 b ld o ped 0005 duo,0) ¥ (codlS &5 jLiwe F o395 3 & ayed AT g

B0 05 °
uu’ 9 ﬁ{*

o ,95d ¢

SR ASURPSSRPERLY

>l ley @

s J> sln LB slo 35, ¢

Topic
Recursion and Backtracking
Dynamic Programming
Greedy Algorithms
Amortized Analysis
Elementary Graph algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths
Maximum Flow
String Matching

NP-Completeness

Reference

Ch.1 and Ch.2 JeffE

Ch.3 JeffE and Ch.15 CLRS

Ch.4 JeffE and Ch.16 CLRS

Ch.17 CLRS

Ch.6 JeffE and Ch.22 CLRS

Ch.7 JeffE and Ch.23 CLRS

Ch.8 JeffE and Ch.24 CLRS

Ch.9 JeffE and Ch.25 CLRS

Ch.10 JeffE and Ch.26 CLRS

Ch.32 CLRS

Ch.12 JeffE and Ch.34 CLRS

Recursion cu:d L

ool 5l gl aiged @
sP

el g3l e
By Gl S yo ®
J> 9 e 5551 ¢
ARG RN
> ol o bl e

o ol o bl

Solel o g aileo
(CLRS cs ;14 Jas) Medians and Order Statistics *

Sode yp yiiis g (g eSS
Selection in expected linear time (,Uasl 0,90 oy Jodow) Solar Cles! ©

(Il o 50y Judow) o e o sl o

o ol o bl

Solel i i g ailo ®
(CLRS s 514 Ja8) Medians and Order Statistics ©

Sode yp yiiis g (g eSS
Selection in expected linear time (,Uasl 0,90 oy Jodow) Solar Cles! ©

(Il 50y Judow) (o e o sl o

Input: A set A of n (distinct) numbers and a number 7, with | <71 < n.
Output: The element x € A that is larger than exactly 1 — 1 other elements of A.

7

RANDOMIZED-SELECT(A, p.r.1)

I iftp=r

2 then return Al p]

3 ¢ < RANDOMIZED-PARTITION (A, p, r)

4 k<«<—qg—p+1

S ifi =k > the pivot value is the answer

6 then return Alg|

7 elseif i < k

8 then return RANDOMIZED-SELECT(A, p,g — 1,1)
O else return RANDOMIZED-SELECT(A.qg + 1.r.1 — k)

12

N

Divide the n elements of the input array into |n/5] groups of 5 elements each
and at most one groun made up of the remaining n» mod 5 elements.

Find the median of each of the [n/5] groups by first insertion sorting the ele-
ments of each group (of which there are at most 5) and then picking the median
from the sorted list of group elements.

Use SELECT recursively to find the median x of the [n/5] medians found in
step 2. (If there are an even number of medians, then by our convention, x is
the lower median.)

Partition the input array around the median-of-medians x using the moditied
version of PARTITION. Let k£ be one more than the number of elements on the
low side of the partition, so that x 1s the kth smallest element and there are n —k
elements on the high side of the partition.

If i = k, then return x. Otherwise, use SELECT recursively to find the ith
smallest element on the low side if 1 < k, or the (i — k)th smallest element on
the high side if 1 = k.

10

T'(n) < G(1) it n < 140 .
n) < T([n/5])+T(Tn/10+6)+ O(n) ifn > 140.

11

cde 4 culs sl

259 M s ©

Sk oo

Subset sum ¢

Sk

(Text Segmentation) v (goi puwds ®

(Longest increasing subsequence) ol Jlgs p 5 SYeb ®
(Optimal binary search trees) _go90 (ggmtins> digs <50 @

<
)LJ -
4O

et

)

]
o

o

e

T
B

| 3 x 3 fake-sugar-packet game.

H [] [
v D D
Figure 2.4. Verawinsthe 3x 3 ga

o
L
)
B
2 oD o2
[B E
'E B o
v v ¥ ¥ v v ¥ v
= 2 & 2 Bl & DD) E":’ E L)
% % % = B (B (B [

Figure 2.5. The first two levels of the fake-sugar-packet game tree.

15

PLayANyGaME(X, player):

if player has already won in state X
return Goop
if player has already lost in state X

return BAD
for all legal moves X ~» Y
if PLAYANYGAME(Y, —player) = Bap
return Goobp (X ~» Y isa good move))

return Bap {{There are no good moves))

16

Subset sum

* In the n-queens problem, the goal is a sequence of queen positions,
one in each row, such that no two queens attack each other. For each
row, the algorithm decides where to place the queen.

* In the game tree problem, the goal is a sequence of legal moves, such
that each move is as good as possible for the player making it. For
each game state, the algorithm decides the best possible next move.

* In the SubsetSum problem, the goal is a sequence of input elements
that have a particular sum. For each input element, the algorithm
decides whether to include it in the output sequence or not.

