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Recursion and Backtracking
Dynamic Programming
Greedy Algorithms
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Input: A set A of n (distinct) numbers and a number 7, with | <71 < n.
Output: The element x € A that is larger than exactly 1 — 1 other elements of A.
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RANDOMIZED-SELECT(A, p.r.1)

I iftp=r

2 then return Al p]

3 ¢ < RANDOMIZED-PARTITION (A, p, r)

4 k<«<—qg—p+1

S ifi =k > the pivot value is the answer

6 then return Alg|

7 elseif i < k

8 then return RANDOMIZED-SELECT(A, p,g — 1,1)
O else return RANDOMIZED-SELECT(A.qg + 1.r.1 — k)
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Divide the n elements of the input array into |n/5] groups of 5 elements each
and at most one groun made up of the remaining n» mod 5 elements.

Find the median of each of the [n/5] groups by first insertion sorting the ele-
ments of each group (of which there are at most 5) and then picking the median
from the sorted list of group elements.

Use SELECT recursively to find the median x of the [n/5] medians found in
step 2. (If there are an even number of medians, then by our convention, x is
the lower median.)

Partition the input array around the median-of-medians x using the moditied
version of PARTITION. Let k£ be one more than the number of elements on the
low side of the partition, so that x 1s the kth smallest element and there are n —k
elements on the high side of the partition.

If i = k, then return x. Otherwise, use SELECT recursively to find the ith
smallest element on the low side if 1 < k, or the (i — k)th smallest element on
the high side if 1 = k.
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T'(n) < G(1) it n < 140 .
n) < T([n/5])+T(Tn/10+6)+ O(n) ifn > 140.
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| 3 x 3 fake-sugar-packet game.
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Figure 2.5. The first two levels of the fake-sugar-packet game tree.
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PLayANyGaME(X, player):

if player has already won in state X
return Goop
if player has already lost in state X

return BAD
for all legal moves X ~» Y
if PLAYANYGAME(Y, —player) = Bap
return Goobp (X ~» Y isa good move))

return Bap {{There are no good moves))
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* In the n-queens problem, the goal is a sequence of queen positions,
one in each row, such that no two queens attack each other. For each
row, the algorithm decides where to place the queen.

* In the game tree problem, the goal is a sequence of legal moves, such
that each move is as good as possible for the player making it. For
each game state, the algorithm decides the best possible next move.

* In the SubsetSum problem, the goal is a sequence of input elements
that have a particular sum. For each input element, the algorithm
decides whether to include it in the output sequence or not.



