طراحي الگوريتم ها

۳۱ شهریور و ۲ مهر ملکی مجد

- <u>mmalekimajd@gmail.com</u>
- Room 307
- Telegram group
- References
 - Books!
 - Google
 - Prof. and TAs

CLRS	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein	
JeffE	Algorithms by Jeff Erickson	

 نمره دهی
 میان ترم و پایان ترم ۱۴. تمرین ها و پروژه ۴. مشارکت کلاسی ۲ (درصد نمره تمرین ها با توجه به تعداد آن ها ممکن است تغییر کند)

مقدمه

- الگوريتم
- اثبات درستى الگوريتم
 - زمان اجرا
- روش های کارا برای حل مسئله

Торіс	Reference			
Recursion and Backtracking	Ch.1 and Ch.2 JeffE			
Dynamic Programming	Ch.3 JeffE and Ch.15 CLRS			
Greedy Algorithms	Ch.4 JeffE and Ch.16 CLRS			
Amortized Analysis	Ch.17 CLRS			
Elementary Graph algorithms	Ch.6 JeffE and Ch.22 CLRS			
Minimum Spanning Trees	Ch.7 JeffE and Ch.23 CLRS			
Single-Source Shortest Paths	Ch.8 JeffE and Ch.24 CLRS			
All-Pairs Shortest Paths	Ch.9 JeffE and Ch.25 CLRS			
Maximum Flow	Ch.10 JeffE and Ch.26 CLRS			
String Matching	Ch.32 CLRS			
NP-Completeness	Ch.12 JeffE and Ch.34 CLRS			

- نمونه ای از کاهش
 - برج هانوی
- مرتب سازی ادغامی
- مرتب سازی سریع
- الگوى تقسيم و حل
 - درخت بازگشتی
- انتخاب در زمان خطی

انتخاب در زمان خطی

- میانه و ترتیب آماری
- Medians and Order Statistics (فصل ۹ از کتاب CLRS)
 - كمترين و بيشترين مقدار
- انتخاب تصادفی (تحلیل زمان مورد انتظار) Selection in expected linear time
 - انتخاب در زمان خطی (تحلیل بدترین حالت)

- میانه و ترتیب آماری
- CLRS (فصل ۹ از کتاب Medians and Order Statistics)
 - كمترين و بيشترين مقدار
- انتخاب تصادفی (تحلیل زمان مورد انتظار) Selection in expected linear time
 - انتخاب در زمان خطی (تحلیل بدترین حالت)

Input: A set *A* of *n* (distinct) numbers and a number *i*, with $1 \le i \le n$. **Output:** The element $x \in A$ that is larger than exactly i - 1 other elements of *A*. RANDOMIZED-SELECT(A, p, r, i)

1 **if** p = r

- 2 **then return** *A*[*p*]
- 3 $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$

$$4 \quad k \leftarrow q - p + 1$$

- 5 if i = k \triangleright the pivot value is the answer
- 6 then return A[q]
- 7 elseif i < k
- 8 then return RANDOMIZED-SELECT(A, p, q 1, i)
- 9 else return RANDOMIZED-SELECT(A, q + 1, r, i k)

- 1. Divide the *n* elements of the input array into $\lfloor n/5 \rfloor$ groups of 5 elements each and at most one group made up of the remaining *n* mod 5 elements.
- 2. Find the median of each of the $\lceil n/5 \rceil$ groups by first insertion sorting the elements of each group (of which there are at most 5) and then picking the median from the sorted list of group elements.
- 3. Use SELECT recursively to find the median x of the $\lceil n/5 \rceil$ medians found in step 2. (If there are an even number of medians, then by our convention, x is the lower median.)
- 4. Partition the input array around the median-of-medians x using the modified version of PARTITION. Let k be one more than the number of elements on the low side of the partition, so that x is the kth smallest element and there are n k elements on the high side of the partition.
- 5. If i = k, then return x. Otherwise, use SELECT recursively to find the *i*th smallest element on the low side if i < k, or the (i k)th smallest element on the high side if i > k.

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

$T(n) \leq \begin{cases} \Theta(1) & \text{if } n \leq 140 \ , \\ T(\lceil n/5 \rceil) + T(7n/10 + 6) + O(n) & \text{if } n > 140 \ . \end{cases}$

11

- مسئله n وزير
 - درخت بازی
- Subset sum
 - طرح کلی
- تقسیم بندی متن (Text Segmentation)
- طولانی ترین توالی افزایش (Longest increasing subsequence)
- درخت بهینه جستجوی دودویی (Optimal binary search trees)

	\bigtriangledown	V	V	
D				
D				
D				

Figure 2.4. Vera wins the 3 × 3 fake-sugar-packet game.

14

Figure 2.5. The first two levels of the fake-sugar-packet game tree.

```
PLAYANYGAME(X, player):
if player has already won in state X
      return Good
if player has already lost in state X
      return BAD
for all legal moves X \rightsquigarrow Y
      if PLAYANYGAME(Y, \neg player) = BAD
                                   \langle\langle X \rightsquigarrow Y \text{ is a good move} \rangle\rangle
            return Good
                                   ((There are no good moves))
return BAD
```

Subset sum

- In the *n*-queens problem, the goal is a sequence of queen positions, one in each row, such that no two queens attack each other. For each row, the algorithm *decides* where to place the queen.
- In the game tree problem, the goal is a sequence of legal moves, such that each move is as good as possible for the player making it. For each game state, the algorithm *decides* the best possible next move.
- In the SubsetSum problem, the goal is a sequence of input elements that have a particular sum. For each input element, the algorithm *decides* whether to include it in the output sequence or not.